DIPYRROLO[1,2-a; 2', 1 '-c]PYRAZINES. 2." ELECTROPHILIC SUBSTITUTION IN DIPYRROLO[1,2-a; 2',I'-c]PYRAZINES: PROTONATION, TRIFLUORO-ACETYLATION, ACETYLATION

V. I. Terenin, E. L. Ruchkina, K. V. Karapetyan, V. M. Mamaev, and Yu. G. Bundel'

A number of alkyl-substituted dipyrrolo[1,2-a; 2', 1'-c]pyrazines have been synthesized and investigated to determine their behavior in reactions of protonation, trifluoroacetylation, and acetylation. The experimental results correlate well with the calculated data in most cases.

Dipyrrolo[1,2-a; 2', 1'-c]pyrazine, a heterocycle with two bridge nitrogen atoms, has received very little attention. Only a few studies have been published previously [2-4], describing the synthesis of a number of representatives of this heterocyclic system. No detailed studies have been made of the reactivity of dipyrrolo[1,2-a; 2',1'-c]pyrazines; however, it has been shown that protonation and deuterium exchange of symmetrically substituted dipyrrolo[1,2-a; 2',1'-c]pyrazines proceeds at position 3 or 8. If these positions are occupied, the protonation may proceed at position 1. For unsymmetrically substituted dipyrrolo[1,2-a; 2', 1'-c]pyrazines, protonation is observed at both α -positions (3 and 8).

In our earlier quantum-chemical study of the structure and reactivity of dipyrrolo[1,2-a; 2',1'-c]pyrazines with a single or double bond between the C₍₅₎ and C₍₆₎ atoms [1], it was shown that the most reactive positions in electrophilic substitution are the free α -positions of the pyrrole rings. In the work reported here, in order to confirm the theoretical results, we synthesized a series of dipyrrolo[1,2-a; 2',1'-c]pyrazines with methyl substituents in different positions on the pyrrole rings and investigated their behavior in reactions with various electrophiles.

A convenient method that we had developed previously for obtaining pyrrolo[1,2-a]pyrazines [5, 6] provides a starting point for the synthesis of dipyrrolo[1,2-a; 2',l'-clpyrazines with rather good yields, essentially in a single stage. Quaternary salts, obtained throughthe interaction of the pyrrolo[1,2-a]pyrazines I and II with bromoacetone, are cyclized to dipyrrolo[1,2-a; 2', l'-c]pyrazines III and IV through the Chichibabin reaction.

In order to clarify the direction of protonation, we took ¹H NMR spectra of the dipyrrolo[1,2-a; 2',1'-c]pyrazines IIIa,b and IVa,b in a mixture of CF₃COOH and CDCI₃. For compounds IIIb and IVb, which have only one free α -pyrrole position, we can expect a clean-cut reaction. And in fact, the proton attacks position 3, as indicated by the two-proton singlet observed at 4.8 ppm for the cation Vb and at 5.2 ppm for the cation VIb. Here, the multiplicity of the signals of the other protons remains the same as in the original compounds

In compounds IIIa and IVa, both α -pyrrole positions are open for electrophilic attack. As shown by the quantumchemical calculations, the heat of formation of the cation through attack of a proton at position 3 is lower than at position 8 [1]. And correspondingly, in the ¹H NMR spectra, we observe the formation of only one thermodynamically stable cation Va. or correspondingly Vla.

Thus, the protonation of the dipyrrolo[1,2-a; 2',1'-c]pyrazines IVa,b and their 5,6-dihydro analogs IIIa,b in a $CF₃COOH-CDCl₃ mixture proceeds unambiguously at position 3.$

*For communication 1, see [1].

M. V. Lomonosov Moscow State University, Moscow 119899. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 11, pp. 1566-1572, November, 1995. Original article submitted September 13, 1995.

In addition to the protonation of the dipyrrolo[1,2-a; 2',1'-c]pyrazine derivatives IIIa,b and IVa,b, we investigated the trifluoroacetylation and acetylation of these compounds. The trifluoroacetyl cation is a rather strong electrophile. For example, the acylation of pyrrole with trifluoroacetic anhydride proceeds rapidly at 0° C [7]; and the trifluoroacetylation of indolizines containing even such strong electron-acceptor substituents as the nitro group will proceed in 5-10 min at 20°C, giving 3trifluoroacetyl-6(8)-nitroindolizines with high yields [8]. In the case of the dipyrrolo[1,2-a; 2',1'-c]pyrazines IIIa,b and IVa,b, the reaction proceeds in 1.5 h at room temperature, forming ditrifluoroacetyl derivatives.

The acylation of 2-methyl-5,6-dihydrodipyrrolo[1,2-a; 2',1'-c]pyrazine (IIIa) and 2-methyldipyrrolo[1,2-a; 2',1'c]pyrazine (IVa) by trifluoroacetic anhydride gives 3,8-ditrifluoroacetyl-2-methyl-5,6-dihydrodipyrrolo[1,2-a; 2',1'-c]pyrazine (IIIc) and 3,8-ditrifluoroacetyl-2-methyldipyrrolo[1,2-a; 2', 1'-c]pyrazine (IVc) with high yields. According to quantum-chemical calculations of compounds IIIa and IVa, the highest π -electron density in the HOMO is concentrated on the α -carbon atoms of the pyrrole rings [1]; this finding correlates well with the experimental results.

In compounds IIIa and IVa, both α -pyrrole positions are open for electrophilic attack. In the dipyrrolo[1,2-a; 2',1'c pyrazines IIIb and IVb, in contrast, the α -position of one of the pyrrole rings is occupied by a methyl group, so that electrophilic substitution in this ring can proceed only at one of the remaining free positions 9 or 10. A calculation of the hypothetical molecule of 2,8-dimethyl-3-trifluoroacetyl-5,6-dihydrodipyrrolo[1,2-a; 2',1'-c]pyrazine shows that the π -electron density in the HOMO of the C₍₉₎ and C₍₁₀₎ atoms is practically identical [1], thus making it equally probable that the second electrophilic attack will take place at either of these atoms. And in fact, in the trifluoroacetylation of 2,8-dimethyl-5,6dihydrodipyrrolo[1,2-a; 2',1'-c]pyrazine (IIIb), commensurate yields are obtained for the two ditrifluoroacetyl isomers, namely 3.9-ditrifluoroacetyl-2.8-dimethyl-5.6-dihydrodipyrrolo[1,2-a; 2',1'-c]pyrazine (IIIe) and 3,10-ditrifluoroacetyl-2.8-dimethyl-

Compound	Empirical formula	T mp. ۰c	PMR spectrum, δ , ppm (and J, Hz)	Yield, X,
1	2	\mathbf{j}	4	S.
Шa	$C_{11}H_{12}N_2$	Oil	2,10 (3H, s, 2-CH ₃), 4,08 (2H, m, 5-CH ₂), 4,14 $(2H, m, 6\text{-CH}_2)$, 6,09 (1H, s, 1-H), 6,15 (1H, d d, $J_{910} = 3.6$, $J_{98} = 2.7$, 9-H), 6.20 (1H, d, d, $J_{109} = 3.6, J_{108} = 1.5, 10-11, 6.35$ (111, s, 3-11), 6,56 (1H, d.d., $J_{89} = 2,7$, $J_{810} = 1$ -, 5 -, 8-11)	
Шь	$C_{12}H_{14}N_2$	155	2.07 (311, d. d. JCH3, 1-11 = 0.9, JCH3, 341 = 0.6, 2-CH3), 2,22 (3H, d, JCH3H =0,9, 8-CH3), 3,99 $(211, m, 6\text{-}CH2)$, 4,05 $(211, m, 5\text{-}CH2)$, 5,83 (111, d. q., J ₉₁₀ = 3,4, JHCH ₃ = 0,9, 9-11), 5,99 (111. d. q. $I_{13} = 1.6$, JHCH ₃ = 0.5, 1-H ₁ , 6.05 (III, d , $I_{109} = 3.4$, 10-II), 6.34 (III, d q, $J_{31} = 1.7, J$ (ICH ₃ = 0.9, 3-11)	66
Шc	$C_{15}H_{10}F_6N_2O_2$	135.136	2.44 (311, d, JCH3H = 0,6, 2-CH3), 4,83 (2H, m, $5 \cdot CH_2$, 4,85 (211, m, 6-CH ₂), 6,51 (111, d, $J11C113 = 0.6, 1-111, 6.63$ (111, d, $J_{109} = 4.5$, 10-II), 7,31 (111, m, $J_{910} = 4.5$, 9-11)	65
Illd	$C_{16}H_{12}F_6N_2O_2$	185	2,32 (3H, d, JCH3H = 0,9, 8-CH3), 2,43 (3H, q, JCH3H = 1,9, 2-CH3), 4,14 (2H,m, 6-CH2), 4,78 (2H, m, 5-CH ₂), 6,56 (1H, m, JHCH ₃ = 0,9, $9-11$, 7,46 (111, m, 1-11)	53
Ille	$C_{16}H_{12}F_6N_2O_2$	228230	2,41 (3H, d, JCH3H = 0.9, 2-CH3), 2,64 (3H, s, $8-CH_3$, 4,14 (2H, m, 6-CH ₂), 4,78 (2H, m, 5 CH ₂), 6,37 (HI, d, Jucu ₃ = 0,9, 1-H), 6,95 $(111, b5, 10-11)$	35
Ш	$C_{13}H_{14}N_2O$	121	2,43 (3H, s, 2-CH3), 2,47 (3H, s, 3-CH3CO), 4.18 (211, t, 6-CH ₂), 4,86 (211, t, 5-CH ₂), 6,18 (111, s. 1-11), 6,24 (111, d d, $J_{910} = 3.6$, $J_{98} = 2,8, 9$ -H), 6.43 (111, d d, $J_{108} = 1,2$, $J_{109} = 3.6, 10-111, 6.72$ (111, d.d., $J_{80} = 2.8$) $J_{810} = 1, 2, 8 - H$	42
Illg.	$C_{13}H_{14}N_2O$		bs, $1,95$ (311, $2-CH_3$, $2,14$ (3H, $\frac{1}{5}$, 8-CH ₃ CO), 4,2 (2H, t. d, 5-CH ₂), 4,9 (2H, t, d, 6-CH ₂), 6,26 (1H, d, $J_{109} = 4,2,10$ -H), 6,31 (III, q, JHCH3 = 0.6, 1-II), 6.50 (III, q, JHCH3 = 1.0, 3-H), 7.00 (1H, d, Join = 4.2, 9-11)	5^*
ПІЬ	$C_{15}H_{16}N_2O_2$	195	$2,42$ (3H, $2-CH_3$, $2,45$ (3H, s) b ₅ 3-CH ₃ CO), 2,47 (3H, s. 8-CH ₃ CO), 4,78 (4H, bs, $5,6$ -CH ₂), $6,30$ (IH, bs, 1-H), $6,40$ $(111, d, 10-11), 7,00 (111,d, 9-11)$	41
Ш	$C_{14}H_{16}N_2O$	184	2,27 (3H, 5, 8-CH3), 2,40 (3H, 5, 2-CH3), 2,44 (3H, s, 3-CH3CO), 4,02 (2H, t, 6-CH2), 4,84 $(211, 1, 5\cdot C11_2), 5,95$ (111, d, $J_{910} = 3,0, 9\cdot 11$), 6.12 (111, s, 1-11), 6.34 (111, d, $J_{100} = 3.0$, $10 - 11$	81 20 ¹ 35 [†]
Шĵ	$C16H18N2O2$	121 123	2,29 (3H, s, 8-CH ₃), 2,49 (3H, s, 2-CH ₃), 2,51 (3H, s. 1-CH3CO), 2.54 (3H, s., 3-CH3CO). 4,06 (2H, t, 6-CH2), 4,75 (2H, t, 5-CH2), 5,99 (111, d d. Jom = 3,7, 9 H), 6,67 (111, d. $J_{\rm 109}$ = 3,7, 10-11)	13
ШК	$C_{16}H_{18}N_2O_2$	104 165	2.28 (311, d. JCH3H = 0.8, 8 (113), 2.43 (311, s. 2-CH3), 2,46 (3H, s, 3-CH3CO), 2,47 (3H, s, 10-CH3CO), 4.02 (2H, t, 6-CH5), 4.83 (2H, t, 5-CH ₂), 6,36 (HI, d Jucity = 0.8, 9 H), 7,40 $0H_{\rm ex}, 1H_{\rm F}$	4 † 7‡
III/	$C_{16}H_{18}S_{2}O_{1}$	221 222	2.42 (3H, 5, 9) CH3CO), 2.43 (3H, 5, 2) CH(), 2,46 (3H, s., 3-CH3CO), 2,59 (3H, s., 8-CH3). 4,09 (2H, t. b-CH2), 4,87 (2H, t. 5-CH2), 6,19 $(111, 5, 1-11), 6.72, (111, s, 10-11)$	13

TABLE 1. Characteristics of Synthesized Compounds

*Compounds IIIg, IVh, and IVi could not be isolated in individual form. Yields were calculated on the basis of mixture component ratios as indicated by PMR spectra. [†]Obtained by method B. [‡]Obtained by method C.

5,6-dihydrodipyrrolo[1,2-a; 2',1'-c]pyrazine (IIId). In the molecule of 2,8-dimethyl-3-trifluoroacetyldipyrrolo[1,2-a; 2',1'c]pyrazine, in contrast to its 5,6-dihydro analog, the preferred site of electrophilic attack is position 10 [1]. This evidently ex plains the fact that the trifluoroacetylation of 2,8-dimethyldipyrrolo[1,2-a; 2',1'-c]pyrazine (IVb) yields only one product, 3,10ditrifluoroacetyl-2,8-dimethyldipyrrolo[1,2-a; 2',1'-c]pyrazine (IVd), in almost quantitative yield.

Compound	Found, %			Calculated, %		
	C	\mathbf{H}	N	$\cal C$	н	N
Шb	77,57	7.73	15.26	77.42	7.53	15.05
Шc	49.19	2.75	7,36	49.45	2.75	7.59
IIId	49,26	3,06	7,17	50.79	3.17	7,41
IIIe	50,05	3.07	6,97	50.79	3,17	7,41
Шf	72.80	6.90	12,64	72.89	6.54	13,08
Шг	73.57	7,05	12.80	73.68	7.02	12.28
IVa	78.10	6.03	17,27	77,65	5.88	16.47
IV _b	78,06	6.56	15,60	78,26	6.52	15.22
IVc	50.02	2,36	7,46	49,72	2,21	7,73
IV d	51,26	2,59	7,83	51,06	2,66	7.45
IVg.	73.26	5.89	11.79	74,34	6,19	12,39

TABLE 2. Elemental Analysis of Synthesized Compounds

It is known that the acetyl cation is a weaker electrophile than the trifluoroacetyl cation; therefore, acetylation of the dipyrrolo[1,2-a; 2',1'-c]pyrazines IIIa,b and IVa,b proceeds only when the reaction mixture is refluxed in toluene for several hours; the reaction yields mainly the 3-monoacetyl derivatives. Thus, in the acylation of compounds IIIb, IVa, and IVb by acetic anhydride, only the 3-monoacetyl derivative is formed: From compound IIIb, 3-acetyl-2,8-dimethyl-5,6-dihydrodipyrrolo[1,2-a; 2',1'-c]pyrazine (IIIi) (81%); from compound IVa, 3-acetyl-2-methyldipyrrolo[1,2-a; 2',1'-c]pyrazine (IVe) (61%) ; from the dipyrrolopyrazine IVb, 3-acetyl-2,8-dimethyldipyrrolo[1,2-a; 2',1'-c]pyrazine (IVg) (82%).

In contrast to the dipyrrolopyrazines HIb, IVa, and IVb, the 5,6-dihydrodipyrrolo[1,2-a; 2', I'-c] pyrazine HIa interacts with acetic anhydride to form a mixture of the 3- and 8-monoacetyl isomers. As expected, however, the main product is still 3-acetyl-2-methyl-5,6-dihydrodipyrrolo[1,2-a; 2',1'-c]pyrazine (IIIf) (42%); the yield of 8-acetyl-2-methyl-5,6-dihydrodipyrrolo[1,2-a; 2',1'-c]pyrazine (IIIg) is only 5%, this product being recovered only as a mixture with compound IIIf.

It has been reported that catalysis of acylation by anhydrous magnesium perchlorate increases the product yield [9]. In the case of the dipyrrolopyrazines, we do not observe any higher yields of 3-acetyldipyrrolo[1,2-a; 2',1'-c]pyrazines, but only the formation of diacetyl derivatives or a change in the direction of electrophilic attack. The use of Anhydrone [magnesium perchlorate) in this reaction probably lowers its energy barrier and permits the appearance of products that are less thermodynamically favorable, even though the 3-monoacetyl derivative is still the principal product. Only in the acetylation of the dipyrrolo[1,2-a; 2',1'-c]pyrazine IIIa in the presence of magnesium perchlorate did we fail to detect the 3-monoacetyl derivative; the only reaction product that was recovered was 3,8-diacetyl-2-methyl-5,6-dihydrodipyrrolo[1,2-a; 2',1'-c]pyrazine $(IIIh)$.

Acetylation of compound IVa in the presence of magnesium chlorate leads to a mixture of the 3-monoacetyl derivative IVe and the 3.8-diacetyl derivative IVf, with the former as the main reaction product, yield 38%; the yield of 3,8-diacetyl-2methyldipyrrolo[1,2-a; 2',1'-c]pyrazine (IVf) is 12% .

The main product from the acetylation of the dipyrrolopyrazine IIIb, the same as in the preceding case, is the 3monoacetyl derivative IIIi. However, a mixture of diacylated products is also formed: 3,9-diacetyl- (IIII, 13%), 3,10-diacetyl-(IIIk, 4%), and 1,3-diacetyl-2,8-dimethyl-5,6-dihydrodipyrrolo[1,2-a; 2',1'-c]pyrazine (IIIj) (trace amounts).

Compounds IIIi (35%), IIIj (13%), and IIIk (7%) were also recovered when the reaction temperature was increased to 200°C.

The predominant product from the acetylation of 2,8-dimethyldipyrrolo[1,2-a; 2',1'-c]pyrazine (IVb) is 3acetyldipyrrolof 1,2-a; $2', 1'-c$]pyrazine (IVg, 52%); but here also, a change of the direction of electrophilic attack is observed. with the formation of a mixture of two minor monoacetyl components 1-acetyl-2,8-dimethyldipyrrolo[1,2-a; 2',1'-c]pyrazine (IVh) and 10-acetyl-2,8-dipyrrolo[1,2-a; 2',1'-c]pyrazine (IVi), which could not be separated, owing to their very similar chromatographic mobilities. The total yield of the isomers IVh and IVi is 15% , and the ratio of isomers is $3:2$ as determined from high-resolution PMR spectra.

EXPERIMENTAl,

PMR spectra of compounds IIIb, IIId, IIIe, and IVd in CD₂Cl₂, spectra of compounds IIIa, IIIc, IIIf-l, IVa, IVc, and IVe-i in CDCI₃, and spectra of protonation^{*} of compounds IIIa,b and IVa,b in a CF₃COOH-CDCI₃ mixture were taken in a Varian VXR-400 instrument, internal standard TMS. The course of the reaction was monitored by TLC on Silufol UV-254 plates. The yields, constants, and spectral characteristics of the compounds that were obtained are listed in Table 1.

Elemental analyses of the synthesized compounds for C, H, and N matched the calculated values (Table 2).

5,6-Dihydrodipyrrolo[1,2-a; 2', l'-c] pyrazines (llIa,b) and Dipyrrolo[1,2-a; 2', 1 '--el pyrazines (Ira,b). To a solution of 20 mmoles of a 3,4-dihydropyrrolo[1,2-a]pyrazine (la,b) or pyrrolo[1,2-a]pyrazine (IIa,b), in acetone, 22 mmoles of bromoacetone were added. The reaction mixture was left for one day at room temperature, the precipitated salt was dissolved in hot water, and a saturated sodium carbonate solution was added. After one day at approximately 20° C, the crystalline compounds IIIb, IVa, and IVb were filtered off and recrystallized from 2-propanol. Compound llla was extracted with chloroform, the solvent was evaporated, and the residue was chromatographed in a column with $40/100$ m μ silica gel in a 4:1 hexane-ethyl acetate system

Ditrifluoroacetyl Derivatives of 5,6-Dihydrodipyrrolo[1,2-a; 2',1'-c] pyrazine (IIIc-e) and Dipyrrolo[1,2-a; 2',1'c]pyrazine (IVc,d). To a solution of 1 mmole of a 5,6-dihydrodipyrrolo[1,2-a; 2', 1'-c]pyrazine IIIa,b or dipyrrolo[1,2-a; 2',1'c]pyrazine IVa,b in 5 ml of toluene, 22 ml of trifluoroacetic anhydride was added. The reaction mixture was held for 1.5 h at room temperature, after which the solvent and excess anhydride were evaporated The mixture of compounds Illd and IIIe were separated in a column with Silperl in a 5:1 benzene--hexane system; compounds Illc and IVc were separated in a column with $40/100 \mu$ m silica gel in a hexane-ethyl acetate system with a gradient from 4:1 to 1:1; compound IVd was separated in a column with $5/40 \mu m$ silica gel in a 1:2 benzene-ethyl acetate system.

Acetyl Derivatives of 5,6-Dihydrodipyrrolo[1,2-a; 2',1'-c]pyrazine (IIIf-*l*) and Dipyrrolo[1,2-a; 2',1'-c]pyrazine (IVe-i). A. To a solution of 1 mmole of the 5,6-dihydrodipyrrolo[1,2-a; 2', l'-c]pyrazine IIIa,b or the dipyrrolo[1,2-a; 2', l'c]pyrazine IVa,b in 10 ml of toluene, 2.3 mmoles of acetic anhydride was added The reaction mixture was refluxed for 7-24 h until the original reactant had disappeared as determined by TLC. The solvent and the excess anhydride were removed under vacuum. Compounds IVe and IVg were crystallized from heptane; compound Illi was separated in a column with Silperl in a hexane-ethyl acetate system with a gradient from $6:1$ to $1:1$; the mixture of compounds IIIf and IIIg was separated in a column with 40/100 μ m silica gel in a 4:1 hexane-ethyl acetate system.

B. To a solution of 1 mmole of the 5,6-dihydrodipyrrolopyrazine IIIa,b or the dipyrrolopyrazine IVa,b and 23 mmoles of acetic anhydride in 10 ml of toluene, 0.2 mmole of magnesium perchlorate was added. The mixture was refluxed for 1-5 h. The solvent and excess anhydride were removed under vacuum. Compound IIIh was chromatographed on $100/250 \mu m$ silica gel in ethyl acetate. A mixture of compounds IIIi, IIIj, IIIk, and IIII was separated in a column with $40/100 \mu m$ silica gel in a hexane-ethyl acetate system with a gradient from $6:1$ to $1:1$; the mixture of compounds IVe and IVf was separated in a 1:1 benzene-hexane system, then 1:4 acetone-hexane; the mixture of compounds IVg, IVh, and IVi was separated in a 1:1 benzene-hexane system, then 1:4 ethyl acetate-hexane.

C. A solution of I mmole of compound IIIb in 23 nunoles of acetic anhydride and 5 ml of toluene was heated for 35-40 h in a sealed ampul at 200° C, after which the solvent was taken off; the mixture of compounds IIIi, IIIj, and IIIk was separated in a column with $100/250 \mu m$ silica gel in a hexane-ethyl acetate system with a gradient from 6:1 to 1:1.

This study was performed with financial support from ISF (Grant NBD300), RFFI (Grant 93-03-4593), and the State Committee of the Russian Federation for VO, NTP "Fine Organic Synthesis" (Grant FT-28).

REFERENCES

- \mathbf{I} V. I. Terenin, K. V. Karapetyan, E. L. Ruchkina, V. M. Mamaev, and Yu. G. Bundel', Khim. Geterotsikl. Soedin., No. ll, 1559 (1995).
- \overline{c} V. Boekelheide and K. Fahrenholtz, J. Am, Chem, Soc., 83, 458 (1961).
- 3 R. Buchan, M. Fraser, and P. V. S. Kong Thoo Lin, Heterocycles, 28, 857 (1989).
- **4** U. Burger, Tetrahedron, 39, 2065 (1983).

^{*}As in Russian original; possibly intended to refer to compounds Va,b and VIa,b $-$ Translator

- 5. A. M. Likhosherstov, V. P. Peresada, V. G. Vinokurov, and A. P. Skoldinov, Zh. Org. Khim., 22, 2610 (1986).
- 6. V. I. Terenin, E. V. Kabanova, and Yu. G. Bundel', Khim. Geterotsikl. Soedin., No. 6, 763 (1991).
- 7. W. Cooper, J. Org. Chem., 23, 1382 (1958).
- **8.** E. V. Babaev, S. I. Bobrovskii, and Yu. G. Bundel', Khim. Geterotsikl. Soedin., No. 11, 1570 (1988).
- 9, G. N. Dorofeenko, A. P. Kucherenko, and N. V. Prokof'eva, Zh. Obshch. Khim., 33, 586 (1963).